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SUMMARY

The axislly symmetric supersonic steady flow is treated for a non-
viscous fluid flowing with whirl component between two arbitrary coaxlal
surfaceg of revolution. The equations that describe this motion are
expressed in characteristic coordinates and in this Porm are used to
determine the meridional (axial-radial) velocities for arbitrary distri-
butions of the tangential velocity components.

Solution of the supersonic characteristic equations is investigated
for arbitrary axisymmetric flow fields with and without vorticity. This
solution includes cases in which the channel shape and the inlet velocity
distribution are prescribed. Also included are cases in which one of
the channel surfaces, the deslred velocities on that surface (within
certain limitations), and the inlet velocity distribution are prescribed.

INTRODUCTION

A survey of the literature showed that a method of design or analy-
sls for supersonic flow with whirl in the three-dimensional region of an
exially symmetric channel formed by two coaxial surfaces of revolution
without blades is not availsble, In the past, axially symmetric channels
of this type have been designed from one-dimensional flow theory or the
stream-filament method, which does not consider the character of the flow
(subsonic or supersonic). More recently, a method of solution was out-
lined in reference 1 for subsonic flow by means of an iteration process
using orthogonal curvilineasr coordinates for arbitrary known boundaries.

A method is described herein which was devised at the NACA Lewis
laboratory for analyzing supersonic flow in this type channel. This
method can be used to obtain the velocities in the flow field when the
boundaries are known with either prescribed rotational or irrotationsl
flow at the inlet. It can also be used to obtein the opposite boundary
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to satisfy & prescribed boundary with the desired velocities on that
boundary (within certain'regions which are defined later) for either a
prescribed rotetional or irrotational flow at the inlet or the outlet.

The velocity components of the flow equations are treated directly
in accordance with the procedure outlined in reference 2. The same
technique for exisymmetric flow in rotating impellers 1s utilized in
reference 3.

In addition to describing the method in a mathematical outline,
this report glves numerical examples which demonstrate some of the
phenomena. present in the flow in either supersonic veneless difusers or
the channel between the outlet of a supersonic compressor impeller and
an annuler cascade of supersonic diffuser blades. The method is par-
ticularly sulted to determine pressure gradlents and possible shock con-
figurations when supersonic flow exists in radiasl diffusers and in
annmular channels gt the inlet or outlel of a compressor or turbine.

This allows the determination of possible flow separation within the
chammel and suggests design modifications to eliminste the losses result-
ing from shocks.

DERIVATION OF .-FLOW EQUATIONS
The flow equatlions to be developed consider the steedy flow of s
nonviscous compressible, fluid under conditions of axial symmetry and
isentroplc state chenges. The coordinstes used and the velocity com-
ponents chosen are shown in figure 1.

Stream Function

With the use of the symbols defined in the gppendix, the continuity
equation for steady fliow is

V- (pV) =0

In cylindrical coordinates, for axisl symmetry (partial derivations of
the fluid propertles with respect to 6 and zero), this equation becomes

2 (owr) + 55 (ovr) =0 (2

Equetion (1) implies the existence of a stream function (of two variables
r and z) such that
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3 = O )

% = -pvr > (2)
)

oz ~ J

In vector notation, equations (2) are

V¥ =prd XV (2a)

Equation of Motion

For steady nonviscous flow, the equation of motion is

o) 7=-1

For isentropic conditions, the pressure term may be eliminated since
V—pE=VH

Hence,

(V) V=-vHE

The genersl energy equation for the conditions of no work done and no
heat transfer states that the stagnation or total energy of the fluid

2

N

=H ~
HT =4+ 5

is constant on any streamline. If the gradient is taken, this equation
becomes

v2
VHp =VE +V =

Upon substitution into the equation of motion,

2
(T-9) T -V & = Ve
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or
¥V x (vxV) =VEHp (3)

which is one form of the eguation of motlon; for lster development Into
the characterlistic equatlions, however, 1t is convenient to transform the
equation in the following memmer: If the scalar product of equation (3)
with the unit vector J 1s teken and the fact that for exial symmetry

J - VBp=0 (4)
is considered, the resulting equetion is
7-[ax (w®] =0 (5)
This equetion further reduces to
V.V (ru) =0 (6)
slnce for axial symmetry,

3 % @OXV) == ¢ (xu) (7)

From equetions (2a), (3), (4), (6), and (7}, it 1s evident that V(ru),
VEI , and VYV are normal to the velocity vector V and the unit vec-

tor Jj. Therefore, VEIl and V(ru) must be parallel to V¥ and hence
Hp and (ru) must be functions of ¥ only (reference 4); that is,

VEp = V¥ % (8)
v (ru) = py 2 (s)

For any wvector A and any unit vector n,

A=n (nA) -nx (nxa)

2499
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may be obtained by expansion of the product n X n X 4. Therefore the
curl VXV can be written

VxT =33+ D] - 3x [Jx(VxV)]

Inserting this expression for the curl into equation (3), expanding the
triple vector product, and utilizing equetion (5) give the following
equation:

7x3[d- wxD)] + (39 [3 x @xD)] = VEp

When equations (2a), (7), (8), and (9) are inserted, this equation
becomes .

. dHy
A [‘j-—gvfxﬁ-%dgu)+a; =0 (10)

which is the most convenient vector form of the equation of motion.

General Equations in Cylindrical Coordinates

The equations for the flow have been developed, thus far, in vector
notation. By the use of cylindrical coordinstes, the equations are
translated to scalar notation.

Continuity equation. - If the vector form of the continuily equa-
tion (1) is expanded and divided by p, the following equation is
obtained: _

V:V+7V- %E =0
By use of the isentropic flow relation

ve _VE
P~ g2

the energy equation, end the fact that \_/"-V'EDI = 0, there results

2
— 1 v
V‘V‘;V-vT:O
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In cylindrical coordinates, for exisl symmetry, this expression becomes

(o) (o Foeow (B (i

From equation (6), the u, and u, terms may be eliminated and the

N

continuity equation in cylindrical coordinetes becomes §
1 vz + s 'W( + )+<1+uz>v 0 (11}

-5V -3 )w, - 5 (w v =) o=

al r 8t zZ " g2 r z ad/ T i

Equation of motion. - From equation (10), since ¥ is not constant, ~

the scalar equation of motion becomes -

a(ru) dHp
ou gy Pr gy - (vg - wp) =0 (12)
wherein J+.{xV) has been expressed in cylindrical coordinstes for -

axial symmetry. Equation (12) is applicable for inlet flow conditilons
which have tangentigl velocity and nonuniform energy level. If the
energy level of the flow entering is uniform, the term dHT/dw vanishes, ~“

corresponding to the vector equation VX(UxV) = 0, which was solved in
reference 1 for subsonic flow.

If in the flow entering (ru) is a constant or zero, the term
d(ru)/ay vanishes. If the flow entering is isoenergetic (dHp/dy = 0)
and (ru) 1s constant or zerc, the flow 1s irrotational and equa-
tion (12) reduces to the familiar expression for two-dimensional flow,

ov _ ow
3z dr

Characteristic Equations

The supersonic flow under consideration is governed by equa-
tions (11) and (12), which form & system of two equations for the two
veriebles w and v as functlons of both r and z. This system of
equations can be solved by the method outlined in reference 2 and leads
to two basic characteristic equations having new independent variables
and 7, instead of r and 2z. Each of these two baslc characteris- ’
lc equations contains derivatives with respect to only one of the
independent variebles ¢ or 17, instead of both independent variables
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as in the case of equations (11) end (12). The independent varisbles §
and 71 are the characteristic paremeters. Two additional equations are
alsc obtained and these are used to find the position coordinates =r

and =z; each of these two equetions contains derivatives of r and =z
with respect to only one of the independent variables § or 1. The
characteristic 1ines have slopes dr/d.z The slope of the characteristic
line designated by ¢, corresponds to varisble § and constant 1, and

the slope designated §_ corresponds to constant ¢ and varisble 7.

The results in applying thls method are shown in the following equations
in which ¢ represents either of the slopes of the characteristic lines
and o© represents either of the coordinates § or n:

rq = z4 (13)
and
Vg + Xvg + Yzg =0 - (14)
where
1
-y (- ) 9
02
X = — < T - ) (16)
1 - -
N
Y=———l 1w2 :".WIMm [ ) d¢]+<l+fi)¥} (17)
Y
a

In the terms in which a choice of sign exists in equations (15) to (17),*
the upper sign refers to a coefficient with a plus subscript and the
lower sign to a coefficlient with a minus subseript. Thus, X, and Y,

correspond to variable § and constant 1, and X. and Y_ correspond

to constant { and variable 1. Examination of equations (15) to (17)
shows that §, =X_ and {_ =X, and that the system is hyperbolic if
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M§.>'l. As shown in reference 2, hodograph solutions tabulated in

advance of application to the solution of any problem that may arise
cannot be made, since equation (14) is nonhomogeneous (Y # 0) and
cannot be integrated directly. As a result, the four equations obtained
from equations (13) and (14), whén o is equal to £ or 17, must be
integrated simalteneously in a step-by-step procedure.

Although the following equations will not be used in this report,
they are included to show a method of solution when the flow is sub-
sonlc. Combining equations (2) and (12) gives-

Vpp + Vpp - 2 %?(pr) Vr - 2 %E(pr) ¥y + (pr)z [% Qé%El B g%z] =0

, (18)
which is the principal equation for solution of subsonlc flow. This
equation may be shown to be of the elliptic type if the meridional veloc-

Ity Vp = 4Yv2 + w2 1s less than the speed of sound. The subsonic flow

problem may be solved by a system of equations consisting of equa-~
tions (2), (18), and the density reletion for isentropic flow

VZ "'l
P =pPp,j <l - T Hp, (19)

This system of equations can be solved for given boundary conditions by
relaxation methods (references 5 and 6) to give the distribution of
in the meridionsal plane, from which the distribution of the velocities
may be obtained from equetion (2). The application of relaxation
methods to & simllar system of equations for the subsonic flow through
raedial- end mixed-flow centrifugal compressors is shown in reference 7.
Another method of solution for s similar system of equations 1s dis~
cussed in detall in reference 8 for flow through turbomachines with
arbltrary hub and casing shapes. —

NUMERICAL PROCEDURE

Two tjpes of problem exist, the direct or analysis problem in which
the velocilties are determined for given boundaries of an arbitrary
channel shape, end the inverse or design problem in which the boundaries
are determined for prescribed velocities. Both the supersonic analysis

2499
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and the design problems may be solved by the characteristic equations
and will be discussed in detall after a consideration of the method of
computation. In general, suppose that conditions are kmown at Py and

Py (fig. 2) and that it is desired to determine conditions at .Ps.
Equation (13) written in difference form for these points is

-z (20)

1= (815 (25 - 7))

2 = (C_)z_s (ZS - Zz) (21)

where (f,);.3 indicates the average value of {; between points P _
and P, and ((_;_)2_3 indicates the average velue of {_  between ___

points P, and Pz. Similarly, equetions (14) may be written in dif-

Terence form:

(22)

]
o

wy - wp + (X)1.5 (vg - vy) + (T)1.3 (23 - 27)

Wz = Wo + (X_)2_3 (V3 - Vz) + (Y—)Z—S (23 - Zz) =0 (23)

These equations also indicate that the coefficients are averages of the
values at the sppropriate points. Equations (20) and (21) may be solved
for rz and 2z, after which equations (22) and (23) may be solved for
wz and vz. For the first approximation, only the values of the coeffi-
cients §, X, Y are known at points P; and Py, and these values are

used In place of averages. After the computation of spproximate values
of the position coordinates and the velocity components at Pz, the

coefficients €, X, Y may be computed at this point. Average coeffi-
cients may now be found and a better approximation to the position
coordinates and the velocity components obtained at Pz may be obtained.

Convergence to an answer of satisfactory accuracy, for a given interval

or net size, is obtained by repeating this process as oftten as required.

The answers will converge to the solution with fewer iterations, how-

ever, the smaller the interval between points. The system of equa-

tions (20) to (23) may also be applied to points Py, P5, and Pz if

the known points happen to have their positions related to each other _
in this menner instead of in the manner indicated by P;, Py, and Pz.

In order to determine d(ru)/d¥ and dHp/d¥ when they are not equal to

zero, in each aspproximation obtained in the preceding process, ¥z must

be computed and can be obtained from
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ZS I3 *Z
vs-v= [ (gbry) aa= | <vr+—§-dr (24)

In this equation, {, is used if the integration is performed along the
constant-n line, or §_, if along the constant-§ line. Since the deriva-
tives d(ru)/ay and dHp/dy are total derivetives, that 1s, ru and Hp

are functions of V¥ only, these derivatives can be evaluated from the
inlet flow conditions for any streamline (¥~function). Hence from the
velue of V3, elther d(ru)/dy, or dHp/d¥, or both may be found at Ps.

Suppose that conditions are known at Pgp (fig. 3) and 1t is desired
to determine conditions at the intersection Pz of the constant-f line

which passes through Ps and the known boundary AB. The boundary AB
is a known function and may be specified as

r = g(z)

In difference form, equation (13) written for these points along a
constant-f line is equation (21) and since

rz = 83(2) (25)

equations (21) and.(25) may be solved for rz and zy. The slope of the
boundary st point Pz 1s given by

(#)-(8) -3

and since equation (23) for these points along a curve of constent ¢
is the difference form of eguation (14), equations (23) and (26) may be
solved for vgz and wz. As previously mentioned, values at the known

point are used in lieu of averages for the first approximation and the
process 1s repested as often as necessary to obtaln the desired accuracy.

Conditlons at point Pé are determined in e similar manner. If either

a(ru)/ay # 0, or dHp/d¥ # O, or both, these conditlons can be readily
evaluated, since v 1is known at the boundsaries.

[28

2499
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Analysis Problem

The spplication of the characteristic equations to the analysis
problem is quite simple and straightforwerd. In this problem the
boundary curves are known, and the flow conditions are usually specl-
fied at the inlet to the exisymmetric channel. A step-by-step solution
along characteristic lines is then made, following the method of com-
putation previously discussed, until the velocities throughout the field
or channel have been obtained. From interpolation along the characteris-
tic lines, the velocities across the outlet may then be obtained. In
lieu of specified flow conditions at the inlet, the flow conditions may
be specified at the outlet and a solution obtained for the flow in the
channel and across the inlet. If, in a particular problem being solved,
d(ru)/d¥ = 0 and d&Hp/d¥ = O, integration to obtain the stream function

along & characteristic line can be omitted if the streamlines are not
desired; even in this case, however, concurrent integration of eque-
tion (24) as the problem is being computed is recogmended, since com-
parison with the known values of the stream function at the boundaries
furnishes an excellent check.

Design Problem

In applying the characteristic equations to obtaln a solution to
one type of design problem, all inlet conditions and part of the outlet
conditions are specified and the velocities are prescribed where it is
possible along a given wall, in order to obtain a solution for the
opposite wall and the channel velocities. 1In the previous discussion
in which figure 2 was considered, it was implied that the boundary con-
ditions are known on a curve C containing such points as P; and Pp

and that the solution 1s then extended into a region which contains
such points as Pz and in which ru(¥) eand Hp(¥) are known. On

curve G, since w, v, ru, pp, and Hp are known, all the other vari-
ebles, such as d(ru)/dy, dBp/d¥, ¥, u, p, and a2, may be computed.

Curve C should correspond to the line AB in figure 4 on which the
inlet flow conditions are specified or to the given boundary curve
BCDE. If the inlet flow conditions are specified, however, the flow is
completely determined in the region bounded by the inlet AB, the por-
tion of the glven boundary curve BC, and the characteristic curve El,

and the velocities may not be prescribed along BC. Conversely, 1f it
is desired to prescribe the velocities completely aslong the curve BCDE,
then only one of the velocity components v or w may be prescribed
along AB. For the prescribed outlet conditions, the same conslidera-
tions are valid in the region DEF. If the values of (ru) and Hyp



12 NACA TN 2768

are specified functions of V¥, various combinstions of the remaining
varilables can be specified along the boundaries for the design problem
as shown in the following table (see fig. 4):

Case | Given boundary | Inlet | Outlet

BC CD | DE AB EF
1 W, V| W, V|W,V|WoOr v | worswvw
or v/w |or v/w
2 VoW | W,V | W, V| W,V W or v
or v/w

30 wyv|wv|v/v|wor v w,v

or v/w
4 vow | w,v [ v/w| w,v W,V

In case the inlet boundary falls along & curve AB, where B 1is
between C and D, the inlet section AB has the same type of boundary
conditions as the outer contour BD; that is, the conditions on AB
and BD are independent of each other. Similar relations apply at the
outlet for an outlet line DE, when E 18 between C and D. A more
general discussion of the relatlon between boundsry shapes and boundary
conditions can be found in reference 3,

After the boundary conditions have been specified, a step-by-step
solution is made along the characteristic lines until the velocities
throughout the channel have been determined. Integration of the veloci-
ties in the channel along charecteristic lines gives the stream func-
tion V. Points of equal V¥ corresponding to the full mass flow yield
the final streamline or the required opposite boundary.

NUMERICAL EXAMPLES

The characteristic equations were applied and solutions were
obtalned for three examples of supersonic flow with whirl through axi-
symmetric channels. These exsmples embody the analysis problem for
irrotational inlet flow and the design problem for both irrotational and
rotational inlet flow. The purpose of these solutions is to present
some typleal problems in order to illustrate the application of the
characteristic equations. For all examples, the inlet flow is isoener-
getic, that is, dHp/d¥ = O. The dimensions r and z. are made dimen-

sionless by the inlet radius of the outer contour in all examples. Also,
the velocities, the static pressures, and the densities are made dimen-
slonless by the inlet stagnation conditions of the velocity of sound, the

2499
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pressure, and the density, respectively. The stream funection ¥ is
made dimensionless by the value of ¥ for the full mess flow. Dimen-
sionless quantities are indicated by the superscript *. The value of
the ratio of specific heats 1 was taken equal to 1.400 for =all

examples.

Example I

The first example was the solution of the analysis problem for the
irrotational flow through & channel representative of a vaneless diffuser
for a supersonic compressor.

Prescribed conditions. - The outer wall of this chamnel was speci-
fied by the equation

- 2.2857z*% - 0.497257*% + 8.6790z* + 20.906r* - 8.9930r*z* - 20.408 = 0
(27)

between r* = 1.0 and r* = 1.9351. The inner contour was specified
from z* =0 to 2z* =0.59552 by

2%2 4 r*2 _ 6.0600r* + 3.9259 = O (28)
and from z* = 0.59552 to r* = 1.9351 by

z*2 _ 0.47212* + r*% - 4.3050r* + 2.7746 = O (29)

The dimensionless inlet conditions were

Vortex constant, r*u® . . « & ¢ ¢ 4 ¢ 4t 4 4 e e s s 4 e o . . » 0.8640
Axial velocity, W* ¢ & ¢ & & & o e o & e 8 e e e s e o« o« o« o2 . . 13377
Radial velocity, V¥ ¢« ¢ & o ¢ ¢ ¢ o o« o o = o s o = s s « « o & « 0

Results. - The network for solution, or the points in the flow field
of example I at which a solution was obtained, is shown in figure 5(a).
Convergence of the §- or the 1n-lines in this figure indicate the for-
mation of a weak shock. If the f- or 1n-lines intersect, a solution
can not be obtained at these points since the solution is multivalued.
The shocks occurring are considered to be weak and the assumption is
made that conditions remain isentropic in this region. The dashed lines
in figure 5{a) show the stresmlines of the flow through the channel
obtained from the values of ¥* found during the solution. Figure 5(b)
shows the contours of the resultant Mach number M throughout the -—
channel which were obtained from the solution. This figure shows that
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the convergence of the characteristic lines running from r* = 1.07,

z% = 1,1 on the immer wall to the point r* = 1.45, z* = 1.23 on the
outer wall ig accompanied by a slight compression wave, and the reflected
compression wave of this system from the outer to the inner wall is
preceded by an expansion wave (probsbly the result of the wall curvature)
which shows up on figure 5(a) as a divergence of the characteristic
lines. Also to be noted are the high outlet Mach numbers (which vary
from 2.4 to 2.75) as compared with the inlet values (which vary from

2.3 to 2.9), desplte the conversion of tengential kinetlc energy into
pressure. Figure 5(c) shows the contours of the meridional component

of the Mach number throughout the channel; thils particular component
emphasizes the effect of the pressure waves, since these waves affect
only the meridional velocity components. This figure brings out the
particular compression wave cited in figure 5(a) and also the fact that
the reflected compression is preceded by an expansion wave.

The contours of the tangential component of the Mach number through
the channel are shown in figure 5(d). This figure has been included to
complete the plot of Mach number components.

In figure 6 is shown the geometric relation between the a-coordinate
used in figure 7 and the r*- and z*-coordinates. The o-coordinate
is used for plotting the solution aslong the boundaries so that a compari-
son between the outer and inner contours can be made more readily. The
distribution of the static pressure, the resultant velocity, the merldi-
onal velocity component along the outer and immer contours, and the area
variations throughout the channel are shown in figure 7.

The variations of the resultant velocity and the pressure on the
outer and inner bounderies correlate wilth each other as might be
expected, but the average of the values on the two walls shows only a
small over-all change from inlet to outlet. On the other hand, the
meridional component shows & steady increase (except for an initiel drop
on the inner contour) in the region of constant area (fig. 7) except
near the end, where the decreasing area tends to keep the average merldi-
onal component more nearly constant. The explanation of this anomalous
behavior lies in the one-dimensional equation for mass flow

Weoary | (30)

Differentiating this equation for the case of constant area after V,
has been expressed in terms of V and u ylelds

V. P
m
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The differentiasls of the density p and the velocity V are expressed
in terms of pressure by the Bernoulli equation

v av = E‘p£ (32)
and the isentropic relation
% = constant (33)

)

The differential of u 1is expressed in terms of r by use of the irro-
tationality condition

ru = constent (34)

The result obtained is

2
d1lInp YMH
6.ln.r=l_ME1

For increassing radius, diffusion will require thet this derivative be
positive; hence, Mg must be lese than 1.

(35)

Since for exsmple I M, is always greater than 1.0, an over-gll
decrease in pressure is to be expected from eguation (35).

Another significant factor 1n figure 7 is the fluctuation of the
resultant velocity V*. The drop in velocity on the outer wall for
45° < o < 50° shows the effect of compression waves originating on the
inner wall at 35° < a < 40° and gives an effect not calculable from
simple one-dimensional flow or streamline flow with flow curvature esti-
mated from wall curvature. There are similar important fluctuations
elsewvhere. In fact, the whole pattern of the resultant veloeclty from
40° to 67° on the immer wall appears to be a reflection of the outer
wall pattern from 28° to 55°, and the trough on the outer wall Ffrom 47°
to 602 is & reflection of the same pattern on the inner wall from 35°
to 50%.

Example IT
The second example is a solution of the design problem for the

irrotational flow through & channel which might be representative of s
transition channel between the outlet of a supersonlc compressor and a
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vaned diffuser. Such a channel might be desirgble from the standpoint

of changing the velocity distribution leaving the outlet of a supersonic
compressor to obtain e flow better edapted for inflow to the diffuser. s
blades. This transition channel might also be used to accomplish part
of the required diffusion by contracting it to the extent thet the
Kantrowitz contraction ratio is reached for the meridional component of
the Mach number. (The Kantrowitz ratio is the ratio of inlet area to
throat ?rea when a normal shock gt the inlet would cause choking et the
throat.

6672 |

Prescribed conditions. - The outer contour of the channel for this
example was specified constant at a radius of 1.0 (dimensionless). The
inlet conditions were the same as those specified in example I. The
velocities could not be prescribed along the ocuter contour without over-
prescribing the problem until the point (r* = 1.0, z* = 0.468, fig. 8(a))
at which the characteristic originating at the inlet hub intersected the
casing. From this point (r* = 1.0, z* = 0.46) untll the end of the
charnel, the velocity was prescribed by the following equation

Ww* = 15.396z*3 - 26.812z*2 + 14.905z* - 1.3437 (36)

Thls equation corresponds to diffusion of the meridional Mach number _
down to the value of the Kantrowitz ratio for an Infinitesimal sireanm
tube slong the outer wall at a passage length of z* = 0.70. The other n .
specified condition 1s that the radial component of veloclty is zero at

the outlet.

Results. - The solution of example II is shown grephically on fig-
ure 8. The propagation of effects along characteristics (fig. 8(a))
agaln indicates the inadequancy of the one-dimensional or streamline
curvature methods of computation. Between ¥* =0 and ¥* = 0.2, for
example, & throat exists et z* ~ 0.44. A similar minimum is seen
between other streamlines. These minimums are located on the cheracter-
istic line between the points z* = 0.375, r* = 0.76 to z* = 0.70,
r* = 1.00. Convergence and divergence of the characteristics indicate
compreesion and expansion, respectively, as may be seen by comparison
of figures 8(a) and 8(c).

The comstent velocity on the outer contour from z* =0 +to
z* = 0.46. (fig. 8(e)) is & consequence of the dependencé of the velocity
there on the inlet conditions (see characteristic curves, fig. 8(a)).
(The possibility of a short diffuser of this type is thus eliminated.)
The prescribed velocity drop from this point on was attained by com-
pression waves formed by the calculated curveture of the inner contour
from z* =0 to z*=0.375 (fig. 8(a)). The result is a pressure
rise on the inner contour in the same region (fig. 8(e)). The outlet
conditions of v¥* = 0 demand a reflex in this curvature and a pressure
drop in the following reglon. o x

- . - = e o —
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Example III

Prescribed conditions. - The third exsmple is similar to the second
with the following differences:

(1) The inlet tangentisl velocity was prescribed constant instead
of inversely proportional to the radius and equal to 0.8640. The flow
is therefore rotational; whereas, for cases I snd II the flow is irro-
tational. The inlet velocity vector at the outer contour was the same
as that of example IT, and likewise, the radial velocity was zero.

(2) The meridional velocity at the outer contour was prescribed
after the intersection point with the characteristic line originating
at the inner contour and the inlet. The value of w* in this region
was:

w* = 22,1308z*3 - 39.4467z*% + 22.6930z* - 2.9145 (37)

The initial and final values for w* in this region are the same in
examples IT and III. ' '

Results. - Because the rotational velocity is lower near the inner -
contour than for example IT, the axial velocity components are higher
end most of the differences between the two examples are & result of this
velocity difference. The results are summarized in figure 9. Because
of the expected decrease in Mach angles shown in figure 9(a), this
diffuser is Inherently longer than that for example II, but the diffusion
rate at the outer contour was increased to maintain the same over-all
axial length. A1l the effects noted in example II may be seen in exam- o
ple IIT with the modification for smaller values of { (characteristic
angles). The shortening of the region of diffusion on the inner contour .
end the shifting of the velocity rise region to the left, for example,
may thus be explained from the change in the characteristic directions.

SUMMARY OF RESULTS

The axisymmetric flow between two surfaces of revolution with vor-
ticity and tangential velocity was set up for solution by the method of
characteristics. The criterion for the exlstence of characteristics is
that the meridional component of the velocity be greater than sonic.
Although the flow configuration is apparently simple, a hodograph solu- ;
tion similar to that for plane flows is not available because of the .
nonhomogeneity of the equations and becsuse the coefficients of the dif-
ferential equation are functions of position as well as of wvelocity.
Some of the main results of this work are contained in the following
statements:
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1. In the numerical example of flow between two highly curved sur-
faces of revolution, pressure waves arose which impinged on the opposing
wall and reflected. Pressure variations therefore have a period struc-
ture and a similerity will exist on the two boundaries.

2. A one-dimensional analysis showed that in the case in which
along the flow path the flow area is constant and the radius increases
go that the tengential component of veloclty decreases, there will be a

diffusion process only if MI%< 1.0, where M, is the meridional com-

ponent of the local Mach number. This fact was confirmed by the two-
dimensional analysis of the example in which there was a radial flow.

3. In all examples computed, the pattern of convergence or dlver- _
gence of the characteristic curves indicated compression or expansion
waves which were the same as would be expected in two-dimensional plane
flow.

Lewis Flight Propulsion Lsboratory
Ngtional Advisory Committee for Aeronautics
Cleveland, Ohio, May 14, 1952
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APPENDIX - SYMBOLS

The following symbols are used in this report:

A ares

a sonic veloclity of gas

g function of z (see equation (25))

H enthalpy

i unit vector parallel to curve for 6 = constant and =z

constant (i = 9r)

constant and r

J unit vector parallel to curve for =z
constant (3 = rV6)

k unit vector parallel to curve for »r = constant and 6

constant (k = ¥z)

M local Mach number

P,p! points defined by figures 2 and 3

P statlic pressure of gas

r normal distance from axlis of symmetry

u rotational component of gas velocity

v resultant gas velocity (V = iv + ju + kw)
v radial component of gas velocity

w axisl component of gas velocity

XX abbreviations (see equation (16))

Y,,Y abbreviations (see equation (17))

Z distance measured parallel to axis of symmetry
o angular position coordinate (see .fig. 6)

T ratio of specific heats
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e slope of curve for § variable and n constant
¢ slope of curve for n varisble ahd ¢ constant
n one of the characteristlc coéordinates

meridional engle (for cylindrical coordinatés)-

one of the characteristic ééoidinates

4

Jo! gas density

g either 1 or £ in general form of equations

¥ stream function (¥ = prixV)

Subscripts:

1 inlet

m meridional component

r,z,qg partial differentiation with respect to_vafiable indicated
by subscript -

T stagnation conditions

e tangential component

1,2,3,4 point or line positions (see figs. 2 to 4)
Superscript:

* dimensionless quantity
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=

Figure 1. - Curved stream surface of revolution showing coordinates and velocity
components.
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Figure 2. - Cheracteristic and cylindrical coordinates.
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WA

Axial length, z

Flgure 3. - Sketch to illustrate discussion of relations between characteristic
lines and boundaries for supersonic analysis problem in annular channel.
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